Tirapazamine-induced cytotoxicity and DNA damage in transplanted tumors: relationship to tumor hypoxia.
نویسندگان
چکیده
Tirapazamine (TPZ) is a hypoxia-selective bioreductive drug currently in Phases II and III clinical trials with both radiotherapy and chemotherapy. The response of tumors to TPZ is expected to depend both on the levels of reductive enzymes that activate the drug to a DNA-damaging and toxic species and on tumor oxygenation. Both of these parameters are likely to vary between individual tumors. In this study, we examined whether the enhancement of radiation damage to tumors by TPZ can be predicted from TPZ-induced DNA damage measured using the comet assay. DNA damage provides a functional end point that is directly related to cell killing and should be dependent on both reductive enzyme activity and hypoxia. We demonstrate that TPZ potentiates tumor cell kill by fractionated radiation in three murine tumors (SCCVII, RIF-1, and EMT6) and two human tumor xenografts (A549 and HT29), with no potentiation observed in a third xenograft (HT1080). Overall, there was no correlation of radiation potentiation and TPZ-induced DNA damage in the tumors, except that the nonresponsive tumor xenograft had significantly lower levels of DNA damage than the other five tumor types. However, there was a large tumor-to-tumor variability in DNA damage within each tumor type. This variability appeared not to result from differences in activity of the reductive enzymes but largely from differences in oxygenation between individual tumors, measured using fluorescent detection of the hypoxia marker EF5. The results, therefore, suggest that the sensitivity of individual tumors to TPZ, although not necessarily the response to TPZ plus radiation, might be assessed from measurements of DNA damage using the comet assay.
منابع مشابه
DNA base damage by the antitumor agent 3-amino-1,2,4-benzotriazine 1,4-dioxide (tirapazamine).
Tirapazamine is a bioreductively activated DNA-damaging agent that selectively kills the hypoxic cells found in solid tumors. This compound shows clinical promise and is currently being examined in a variety of clinical trials, including several phase III studies. It is well established that DNA is an important cellular target for tirapazamine; however, the structural nature of the DNA damage i...
متن کاملDownregulation of DNA repair proteins and increased DNA damage in hypoxic colon cancer cells is a therapeutically exploitable vulnerability
Surgical removal of colorectal cancer (CRC) liver metastases generates areas of tissue hypoxia. Hypoxia imposes a stem-like phenotype on residual tumor cells and promotes tumor recurrence. Moreover, in primary CRC, gene expression signatures reflecting hypoxia and a stem-like phenotype are highly expressed in the aggressive Consensus Molecular Subtype 4 (CMS4). Therapeutic strategies eliminatin...
متن کاملTirapazamine Is Metabolized to Its DNA-damaging Radical by Intranuclear Enzymes1
Tirapazamine (TPZ), a new anticancer drug that is currently in Phase II and HI clinical trials, has a unique mechanism of action. Its cytotoxicity is selective for hypoxic cells in solid tumors and results from DNA damage produced by a free radical, which is generated by enzymatic reduction of the parent molecule. However, there is no agreement as to which enzyme(s) are involved. Here, we have ...
متن کاملTirapazamine is metabolized to its DNA-damaging radical by intranuclear enzymes.
Tirapazamine (TPZ), a new anticancer drug that is currently in Phase II and III clinical trials, has a unique mechanism of action. Its cytotoxicity is selective for hypoxic cells in solid tumors and results from DNA damage produced by a free radical, which is generated by enzymatic reduction of the parent molecule. However, there is no agreement as to which enzyme(s) are involved. Here, we have...
متن کاملOxidative DNA base damage by the antitumor agent 3-amino-1,2,4-benzotriazine 1,4-dioxide (tirapazamine).
Tirapazamine is a bioreductively activated DNA-damaging agent that selectively kills the hypoxic cells found in solid tumors. In this work, base excision repair enzymes were used to provide evidence that tirapazamine causes significant amounts of damage to both purine and pyrimidine residues in double-stranded DNA.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 57 14 شماره
صفحات -
تاریخ انتشار 1997